

Keith Knop, UGA Libraries

ORCID: 0000-0001-7394-1897
URL for this handout: http://goo.gl/ZYeKSH

Presented for the University of Georgia Libraries
Professional Development and Research Committee

Introduction to OpenRefine

Sample Data Set
This demonstration uses a list of titles published in the pulp magazine Weird Tales, which originally ran
from 1923 to 1954. The data was taken from Wikisource: https://en.wikisource.org/wiki/Weird_Tales

Download as Excel spreadsheet: http://goo.gl/XWVeLN
Download as tab-separated text: http://goo.gl/DQgsUG

OpenRefine can sometimes be fussy about Excel for no obvious reason; if you have difficulty getting it to
recognize Excel data, try saving the file as CSV or tab-separated text.

This demonstration covers:

● Using "Split into several columns" to ensure each column contains one type of data
● Using "Split multi-valued cells" to keep multiple instances of the same kind of data in the same

column
● Using facets to explore data and limit our actions to a subset of records
● Using clustering to identify and resolve inconsistencies
● Using GREL for basic data manipulation
● Augmenting data with information from external sources

Undo/Redo
OpenRefine's undo feature is incredibly robust, which is good if you, say, accidentally blank out half your
data and don't realize it for a while. The Undo/Redo tab at the top of the left-hand panel contains a list of
every operation you've performed since you created the project, and you can roll back to that step by
clicking on it. If you undo and then do something new, the new action will replace all the subsequent
steps.

Also note the Extract... and Apply... buttons. Extract will output a list of all (or some, if you choose) of
your edits in a JSON format, which you can copy/paste and save in a text file. This is handy if you need to
do the same processes on multiple datasets; you can simply paste your saved edit history into the Apply
window to repeat the same actions on a new project.

GREL
OpenRefine provides several tools for manipulating data, one of which is the General Refine Expression
Language, or GREL. The syntax is very similar to working with formulas in Excel. Some commonly used
GREL functions (such as trimming whitespace or converting to upper, lower, or title case) have shortcuts
under Edit cells > Common transforms.

GREL assumes that anything outside of single or double quotes is either a variable or a function. There
are several predefined variables, but the most used one is value, which simply refers to the current

http://goo.gl/ZYeKSH
https://en.wikisource.org/wiki/Weird_Tales
http://goo.gl/XWVeLN
http://goo.gl/DQgsUG

Keith Knop, UGA Libraries

ORCID: 0000-0001-7394-1897
URL for this handout: http://goo.gl/ZYeKSH

Presented for the University of Georgia Libraries
Professional Development and Research Committee

value of each cell in a column. You will probably also often want to refer to a value in a different column,
which you can do using cells["Column Name"].value

Here's an example GREL function from the OpenRefine documentation, which takes two arguments (the
parts in parentheses):

chomp(string s, string sep) Returns a copy of s with sep removed from the end if s ends with
sep; otherwise, just returns s. For example, chomp("hardly", "ly") and chomp("hard",
"ly") both return the string hard.

A few points to note:

1. You will probably not often need or want to pass in two literal values; you're much more likely to
use one or more variables. For example, chomp(value, ".") will remove the ending period
from any cell in the current column that ends with a period.

2. Unlike Excel formulas, for nearly any function, you can pass in the first argument from outside the

parentheses by linking it to the function with a period: value.chomp(".") has the same effect
as chomp(value, "."). Useful because...

3. You can link multiple functions together, so that the result of the first becomes the input of the

second. For example, value.trim().chomp(".") will first remove any leading or trailing
whitespace from the current cell contents, and then remove any final periods. This lets you do
several things in one step and also helps reduce the infinite rat's nest of nested parentheses you
can end up with in Excel formulas.

Regular Expressions
Several GREL functions for manipulating strings support regular expressions (or regex), a syntax for
matching patterns rather than literal character strings. They are incredibly powerful and potentially
incredibly frustrating and (fortunately for me) are way out of scope for this presentation. However, here's
an example of a function that uses regex to convert a pattern like Firstname Middlename Lastname to
Lastname, Firstname Middlename.

value.replace(/(.*)\s(.*)/, "$2" + ", " + "$1")

In GREL, regular expressions must be surrounded by forward slashes. A period in regex is a wildcard for
any character, and * indicates zero or more of the preceding character, so .* is a pattern that will match
anything; \s matches a space. Because the default behavior of .* is "greedy," the first will match as
much as it possibly can, up to the final space in the cell. The inner parentheses are capture groups:
matching material inside the first and second set of parentheses is remembered, and then recalled later
using $1 and $2.

Note this isn't perfect! It doesn't know about "Jr.," for one thing, so there will still be some manual cleanup
required--but at least all the juniors will be faceted together.

http://goo.gl/ZYeKSH

Keith Knop, UGA Libraries

ORCID: 0000-0001-7394-1897
URL for this handout: http://goo.gl/ZYeKSH

Presented for the University of Georgia Libraries
Professional Development and Research Committee

For more on regular expressions, I recommend https://regexr.com/, which includes documentation and
allows you to test and troubleshoot expressions on the fly.

Resources

OpenRefine Documentation and Introductory Tutorials
 Wiki
 https://github.com/OpenRefine/OpenRefine/wiki
 OpenRefine Recipes
 https://github.com/OpenRefine/OpenRefine/wiki/Recipes

Reconciliation Services
VIAF, ORCID, and Open Library

 http://refine.codefork.com/

Geonames
 https://github.com/cmh2166/geonames-reconcile

http://christinaharlow.com/walkthrough-of-geonames-recon-service

LC Name Authority File and LCSH
https://github.com/cmh2166/lc-reconcile

FAST Headings
https://github.com/lawlesst/fast-reconcile

Various Lessons
Library Carpentry
http://data-lessons.github.io/library-openrefine/

OpenRefine for Ecology
http://www.datacarpentry.org/OpenRefine-ecology-lesson/

 Cleaning Data with OpenRefine
 https://programminghistorian.org/lessons/cleaning-data-with-openrefine

 Fetching and Parsing Data from the Web
 https://programminghistorian.org/lessons/fetch-and-parse-data-with-openrefine

Using OpenRefine with MARCEdit
 http://blog.reeset.net/archives/1873

Regular Expressions
 https://github.com/OpenRefine/OpenRefine/wiki/Understanding-Regular-Expressions
 https://regexr.com/

http://goo.gl/ZYeKSH
https://regexr.com/
https://github.com/OpenRefine/OpenRefine/wiki
https://github.com/OpenRefine/OpenRefine/wiki/Recipes
http://refine.codefork.com/
https://github.com/cmh2166/geonames-reconcile
http://christinaharlow.com/walkthrough-of-geonames-recon-service
https://github.com/cmh2166/lc-reconcile
https://github.com/lawlesst/fast-reconcile
http://data-lessons.github.io/library-openrefine/
http://www.datacarpentry.org/OpenRefine-ecology-lesson/
https://programminghistorian.org/lessons/cleaning-data-with-openrefine
https://programminghistorian.org/lessons/fetch-and-parse-data-with-openrefine
http://blog.reeset.net/archives/1873
https://github.com/OpenRefine/OpenRefine/wiki/Understanding-Regular-Expressions
https://regexr.com/

	Sample Data Set
	Undo/Redo
	GREL
	Regular Expressions
	Resources
	OpenRefine Documentation and Introductory Tutorials
	Reconciliation Services
	Various Lessons
	Regular Expressions

